64 research outputs found

    Excitated state properties of 20-chloro-chlorophyll a

    Get PDF
    The excited-state and lasing properties of 20-chloro-chlorophyll a in ether solution were compared to those of chlorophyll a. Desactivation parameters and cross-sections were obtained from non-linear absorption spectroscopy in combination with a physico-mathematical methods package. The Cl substituent at C-20 (1) increases both intersystem crossing and internal conversion, (2) produces a blue-shift of the S1 absorption spectrum, and (3) leads to pronounced photochemistry

    The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle

    Get PDF
    Heating rate calculations with the FUBRad shortwave (SW) radiation parameterization have been performed to examine the effect of prescribed spectral solar fluxes from the NRLSSI, MPS and IUP data sets on SW heating rates over the 11 year solar cycle 22. The corresponding temperature response is derived from perpetual January General Circulation Model (GCM) simulations with prescribed ozone concentrations. The different solar flux input data sets induce clear differences in SW heating rates at solar minimum, with the established NRLSSI data set showing the smallest solar heating rates. The stronger SW heating in the middle and upper stratosphere in the MPS data warms the summer upper stratosphere by 2 K. Over the solar cycle, SW heating rate differences vary up to 40% between the irradiance data sets, but do not result in a significant change of the solar temperature signal. Lower solar fluxes in the newer SIM data lead to a significantly cooler stratosphere and mesosphere when compared to NRLSSI data for 2007. Changes in SW heating from 2004 to 2007 are however up to six times stronger than for the NRLSSI data. Key Points: - Solar minimum and solar cycle differences in SW heating rates and temperature - Comparison of three spectral solar input data sets for solar cycle 22 - Comparison of the newly compiled SORCE-data with the commonly used NRLSSI-dat

    Variability of Sun-like stars: reproducing observed photometric trends

    Get PDF
    The Sun and stars with low magnetic activity levels, become photometrically brighter when their activity increases. Magnetically more active stars display the opposite behaviour and get fainter when their activity increases. We reproduce the observed photometric trends in stellar variations with a model that treats stars as hypothetical Suns with coverage by magnetic features different from that of the Sun. The presented model attributes the variability of stellar spectra to the imbalance between the contributions from different components of the solar atmosphere, such as dark starspots and bright faculae. A stellar spectrum is calculated from spectra of the individual components, by weighting them with corresponding disc area coverages. The latter are obtained by extrapolating the solar dependences of spot and facular disc area coverages on chromospheric activity to stars with different levels of mean chromospheric activity. We have found that the contribution by starspots to the variability increases faster with chromospheric activity than the facular contribution. This causes the transition from faculae-dominated variability and direct activity--brightness correlation to spot-dominated variability and inverse activity--brightness correlation with increasing chromospheric activity level. We have shown that the regime of the variability also depends on the angle between the stellar rotation axis and the line-of-sight and on the latitudinal distribution of active regions on the stellar surface. Our model can be used as a tool to extrapolate the observed photometric variability of the Sun to Sun-like stars at different activity levels, which makes possible the direct comparison between solar and stellar irradiance data.Comment: 20 pages, 16 figures, accepted for publication in Astronomy&Astrophysic

    Deployment of ACT antimalarials for treatment of malaria: challenges and opportunities

    Get PDF
    Following a long period when the effectiveness of existing mono-therapies for antimalarials was steadily declining with no clear alternative, most malaria-endemic countries in Africa and Asia have adopted artemisinin combination therapy (ACT) as antimalarial drug policy. Several ACT drugs exist and others are in the pipeline. If properly targeted, they have the potential to reduce mortality from malaria substantially. The major challenge now is to get the drugs to the right people. Current evidence suggests that most of those who need the drugs do not get them. Simultaneously, a high proportion of those who are given antimalarials do not in fact have malaria. Financial and other barriers mean that, in many settings, the majority of those with malaria, particularly the poorest, do not access formal healthcare, so the provision of free antimalarials via this route has only limited impact. The higher cost of ACT creates a market for fake drugs. Addressing these problems is now a priority. This review outlines current evidence, possible solutions and research priorities

    Obstacles to prompt and effective malaria treatment lead to low community-coverage in two rural districts of Tanzania

    Get PDF
    BACKGROUND\ud \ud Malaria is still a leading child killer in sub-Saharan Africa. Yet, access to prompt and effective malaria treatment, a mainstay of any malaria control strategy, is sub-optimal in many settings. Little is known about obstacles to treatment and community-effectiveness of case-management strategies. This research quantified treatment seeking behaviour and access to treatment in a highly endemic rural Tanzanian community. The aim was to provide a better understanding of obstacles to treatment access in order to develop practical and cost-effective interventions.\ud \ud METHODS\ud \ud We conducted community-based treatment-seeking surveys including 226 recent fever episodes in 2004 and 2005. The local Demographic Surveillance System provided additional household information. A census of drug retailers and health facilities provided data on availability and location of treatment sources.\ud \ud RESULTS\ud \ud After intensive health education, the biomedical concept of malaria has largely been adopted by the community. 87.5% (78.2-93.8) of the fever cases in children and 80.7% (68.1-90.0) in adults were treated with one of the recommended antimalarials (at the time SP, amodiaquine or quinine). However, only 22.5% (13.9-33.2) of the children and 10.5% (4.0-21.5) of the adults received prompt and appropriate antimalarial treatment. Health facility attendance increased the odds of receiving an antimalarial (OR = 7.7) but did not have an influence on correct dosage. The exemption system for under-fives in public health facilities was not functioning and drug expenditures for children were as high in health facilities as with private retailers.\ud \ud CONCLUSION\ud \ud A clear preference for modern medicine was reflected in the frequent use of antimalarials. Yet, quality of case-management was far from satisfactory as was the functioning of the exemption mechanism for the main risk group. Private drug retailers played a central role by complementing existing formal health services in delivering antimalarial treatment. Health system factors like these need to be tackled urgently in order to translate the high efficacy of newly introduced artemisinin-based combination therapy (ACT) into equitable community-effectiveness and health-impact

    Nonlinear response of modelled stratospheric ozone to changes in greenhouse gases and ozone depleting substances in the recent past

    Get PDF
    In the recent past, the evolution of stratospheric ozone (O3) was affected by both increasing ozone depleting substances (ODSs) and greenhouse gases (GHGs). The impact of the single forcings on O3 is well known. Interactions between the simultaneously increased GHG and ODS concentrations, however, can occur and lead to nonlinear O3 changes. In this study, we investigate if nonlinear processes have affected O3 changes between 1960 and 2000. This is done with an idealised set of time slice simulations with the chemistry-climate model EMAC. Due to nonlinearity the past ozone loss is diminished throughout the stratosphere, with a maximum reduction of 1.2 % at 3 hPa. The total ozone column loss between 1960 and 2000 that is mainly attributed to the ODS increase is mitigated in the extra-polar regions by up to 1.1 % due to nonlinear processes. A separation of the O3 changes into the contribution from chemistry and transport shows that nonlinear interactions occur in both. In the upper stratosphere a reduced efficiency of the ClOx-catalysed O3 loss chiefly causes the nonlinear O3 increase. An enhanced formation of halogen reservoir species through the reaction with methane (CH4) reduces the abundance of halogen radicals significantly. The temperature-induced deceleration of the O3 loss reaction rate in the Chapman cycle is reduced, which leads to a nonlinear O3 decrease and counteracts the increase due to ClOx. Nonlinear effects on the NOx abundance cause hemispheric asymmetric nonlinear changes of the O3 loss. Nonlinear changes in O3 transport occur in particular in the Southern Hemisphere (SH) during the months September to November. Here, the residual circulation is weakened in the lower stratosphere, which goes along with a reduced O3 transport from the tropics to high latitudes. Thus, O3 decreases in the SH polar region but increases in the SH midlatitudes. The existence of nonlinearities implies that future ozone change due to ODS decline slightly depends on the prevailing GHG concentrations. Therefore the future ozone evolution will not simply be a reversal of the past

    Chemical contribution to future tropical ozone change in the lower stratosphere

    Get PDF
    The future evolution of tropical ozone in a changing climate is investigated by analysing time slice simulations made with the chemistry–climate model EMAC. Between the present and the end of the 21st century a significant increase in ozone is found globally for the upper stratosphere and the extratropical lower stratosphere, while in the tropical lower stratosphere ozone decreases significantly by up to 30%. Previous studies have shown that this decrease is connected to changes in tropical upwelling. Here the dominant role of transport for the future ozone decrease is confirmed, but it is found that in addition changes in chemical ozone production and destruction do contribute to the ozone changes in the tropical lower stratosphere. Between 50 and 30 hPa the dynamically induced ozone decrease of up to 22% is amplified by 11–19% due to a reduced ozone production. This is counteracted by a decrease in the ozone loss causing an ozone increase by 15–28%. At 70 hPa the large ozone decrease due to transport (−52%) is reduced by an enhanced photochemical ozone production (+28%) but slightly increased (−5%) due to an enhanced ozone loss. It is found that the increase in the ozone production in the lowermost stratosphere is mainly due to a transport induced decrease in the overlying ozone column while at higher altitudes the ozone production decreases as a consequence of a chemically induced increase in the overlying ozone column. The ozone increase that is attributed to changes in ozone loss between 50 and 30 hPa is mainly caused by a slowing of the ClOx and NOx loss cycles. The enhanced ozone destruction below 70 hPa can be attributed to an increased efficiency of the HOx loss cycle. The role of ozone transport in determining the ozone trend in this region is found to depend on the changes in the net production as a reduced net production also reduces the amount of ozone that can be transported within an air parcel

    Poor Performer - eine eigene EntitÀt?

    No full text
    • 

    corecore